Ph.D. Day / GdR-ISIS

Paul Ferrand

March 2019

My background

Huawei corporate presentation

Huawei at a Glance

Huawei corporate presentation

R&D Centers Worldwide: The Best Resources for Innovation

Where am I in there?

So what's it like?

Publications

Teaching

Teaching

Work outputs

Time spent on research topics

Model complexity

Before

System model

In communication systems, fading effects corrupt the amplitude of the envelope of the received signals. We consider the classical *discrete baseband* model from the general continuous multipath fading channel model [See 16, Ch.2], We use the notation of [16] here and consider a single-tap discrete complex baseband channel model where the signal y[m] received at time m depends on the sent signal x[m], an additive white complex gaussian noise term $w[m] \sim C\mathcal{N}(0, N_0)$ and an aggregate tap gain h[m]:

$$y[m] = h[m]x[m] + w[m]$$
 (1)

P – and with the same power in the case of phase shift keyed (PSK) modulations – the $instantaneous\ SNR$ of the received symbols is :

$$\gamma[m] = \frac{|h[m]|^2 P}{N_0}$$
(2)

Let $\mathbb{E}[1]$ denote the expectation operator. The mean SNR may be computed as $\tilde{\gamma} = \mathbb{E}[|h|m|]^2 \frac{N}{N_c}$, where the expectation is taken over h[m]. The effect of fading channels is captured through the probability distribution of the squared aggregate tap gain $|h|m|^2$, and the usual models we use in this paper may be found in [16, Ch.2] or [1, Ch.3]. The probability density functions (p.d.f.) for these models are summarized in Tab.1.

Cost of measurement platforms

So why would anyone hire a Ph.D.?

Engineers know their fields, you added to yours.

- Engineers know their fields, you added to yours.
- > You can deal with unclear/moving targets, and absorb failures.

- Engineers know their fields, you added to yours.
- > You can deal with unclear/moving targets, and absorb failures.
- > You can summarize vast amounts of knowledge quickly.

- Engineers know their fields, you added to yours.
- > You can deal with unclear/moving targets, and absorb failures.
- > You can summarize vast amounts of knowledge quickly.
- You are trained to abstract and understand what you see, and apply relevant tools to the problem.

- Engineers know their fields, you added to yours.
- > You can deal with unclear/moving targets, and absorb failures.
- You can summarize vast amounts of knowledge quickly.
- You are trained to abstract and understand what you see, and apply relevant tools to the problem.
- ▶ You have some respect for the data and the mathematics.

Thanks!