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Prerequisites

Linear algebra

We will consider matrices and vectors, noted as uppercase bold A
and lowercase bold v respectively. A matrix is a collection of ele-
ments arranged in m rows and n columns. Vectors are matrices with
a single column. We have

A =


a11 . . . a1n
...

...
a1m . . . amn

 (1)

The transpose of a matrix is

AT =


a11 . . . a1n
...

...
a1m . . . amn

 (2)

A matrix is symmetric if AT = A, and it is square if m = n. You can
add matrices and vectors if they have the same size. Matrices can be
multiplied as follows. Assume that A is m× n and B is n× p. Note
that the number of columns of A needs to be equal to the number of
columns of B. Then

C = A · B and cij =
n

∑
k=1

aikbkj (3)

When A = aT is actually a row vector and b is a column vector, this
multiplication outputs a scalar, and the operation is called a scalar
product. It is sometimes denoted as

aTb = 〈 a | b 〉 (4)

A matrix multiplication can thus be seen as a collection of scalar
products between the rows of a matrix and the columns of another
matrix—this can come in handy at times.

Scalar products Scalar products are used to check orthogonality in ar-
bitrary spaces. In particular, we will say that 2 vectors are orthogonal
if their scalar product is equal to 0. For vectors in 2 dimensions, this
directly corresponds to the natural orthogonality that we learn since
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childhood, and extends in arbitrary dimensions. We can also define
the norm of a vector through scalar products. We will say that

‖v‖ =
√

vTv (5)

which in turns, allows to define an angle between arbitrary vectors
through their cosine:

cos [ 6 (a, b)] =
aTb
‖a‖‖b‖ (6)

Orthogonal vectors have their cosine equal to 0—once again, as we
learned before. In contrast, colinear vectors have their cosines equal
to 1, and thus the scalar product of colinear vectors is equal to the
product of their norms.

Gram-Schmidt There is more to orthogonality; consider 2 vectors a
and b that are just arbitrary. We can split b into a part that is colinear
with a and a part that is orthogonal to a as follows

b =
aTb
‖a‖2 a +

(
b− aTb
‖a‖2 a

)
(7)

The first term represent the colinear part and the second one between
parentheses the orthogonal one. Through standard algebra you can
verify that the above is obviously true. This can be used to create a
set of orthogonal vectors through a set of arbitrary ones. Let such a
set be denoted {uk}. We proceed iteratively, forming the set {vk} as

v0 = u0 (8)

v1 = u1 −
(vT

0 u1)

‖v0‖2 v0 (9)

v2 = u2 −
(vT

0 u2)

‖v0‖2 v0 −
(vT

1 u2)

‖v1‖2 v1 (10)

... (11)

This operation is sometimes called an orthogonalization or a Gram-
Schmidt procedure, and we say that {vk} is a set of linearly indepen-
dent vectors. One can indeed verify that vT

i vj = 0 by construction Verify that this indeed creates a set of
orthogonal vectors.for any i, and j. If we normalize the vectors in the set, they will form

a basis. The number of vectors in the basis is related to the dimen-
sion of the linear subspace described by the vectors, and is intuitively
linked to the number of degrees of freedom of the linear space.

Rank and identity matrix Back to matrices, we define the rank of
a matrix as the number of linearly independent rows or columns,
whichever is the smallest. There are alternative characterizations but
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this one is practical. In particular, the number of linearly independent
columns are linked to the descriptive power of the matrix since we
can form a basis with the columns. Among specific matrices, we
call the one that is neutral with respect to multiplication the identity
matrix. It is a square matrix with ones on the diagonal, and it verifies
that

AI = IA = A (12)

where the sizes of I are chosen so that the multiplication makes
sense. This neutral element allows one to define the inverse of a
matrix, which is any matrix such that

AA−1 = A−1 A = I (13)

This definition only really makes sense when A is square, although
there are pseudo-inverses in some other cases. When A is square, the
inverse of the matrix will exist and be unique if and only if (iif) the
rank of A is equal to n. If not, A is singular or rank-deficient and ba-
sically has no inverse. A matrix is said to be orthogonal if its columns
and rows are orthogonal pairwise, and if

A−1 = AT AAT = AT A = I (14)

Determinant and trace Next we define the determinant of a square
matrix as the scalar value constructed in a recursive manner as

det A =
n

∑
j=1

aijCij (15)

The values Cij are the cofactors at ij of the matrix A obtained as

Cij = (−1)i+j det Mij (16)

The matrix Mij is obtained by deleting the i-th row and j-th column
of det A—hence the recursive definition. The cofactors are often
considered as a matrix C, which is important because the inverse of a
matrix is defined through this matrix, as

A−1 =
CT

det A
(17)

It is the only general analytical formula to invert an arbitrary matrix;
when A has some specific structure, there may be easier inverse
formulas. We can also define the trace of a matrix as the sum of its
diagonal elements

trA = ∑ aii (18)

Both the determinant and the trace express profound things about a
matrix; we will see shortly what that is.
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Quadratic forms and definiteness A quadratic form is a function of a
vector x defined through a matrix A as

Q(x) = ∑
i

∑
j

Aijxixj = xT Ax (19)

The matrix A is supposed to be symmetric, which entails no loss in
generality since any quadratic form may be expressed in this way. If Exercise: show why.

for all x 6= 0 we have
xT Ax ≥ 0 (20)

the matrix A is said to be positive semi-definite. If the inequality is
strict, A is said to be positive definite.

Properties of matrices, determinants and traces

• (AB)T = BT AT

• (A−1)T = (AT)−1 = A−T

• (AB)−1 = B−1 A−1

• det AT = det A

• det(cA) = cn det A

• det(AB) = det A det B

• det A−1 = (det A)−1

• tr(AB) = tr(BA)

• tr(AT B) = ∑i ∑j AijBij

• det I = 1

• If D is a diagonal matrix, then det D = ∏i dii

• tr(c) = c for all scalars c

Some theorems

1. A square matrix A is invertible if and only if its determinant is
non-zero.

2. A square matrix A is positive definite iif it can be written as A =

CCT for some matrix C that is also full-rank and invertible.

3. A square matrix A is positive definite iif all its principal minors
are positive1 1 The principal minors are the deter-

minants of the top-leftmost square
matrices of increasing size.4. If C is not full-rank or one of the principal minors is equal to 0, A

is only positive semidefinite.
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5. If A is positive definite, then for some full rank m × n matrix B
with m ≤ n, BABT is also positive definite.

6. If A is positive definite, then its diagonal elements are positive
and the determinant of A is positive. If A is only positive semi-
definite, the previous properties are relaxed to non-negative—i.e.
they can be equal to 0.

Matrix inversion lemma A very common and useful property is
stated as follows Proof of this?

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1 (21)

It relates the inverse of sum and product of matrices with the sum
and products of the component inverse. Since the inverse is a com-
plex operation, it is very useful numerically. As an example, it can
be used to compute the so-called rank-1 update of the inverse of the
matrix A

(A + uuT)−1 = A−1 − A−1uuT A−1

1 + uT A−1u
(22)

where u is a column vector and uuT is the outer product of u with
itself2. This matrix has rank 1 since its columns are all colinear with 2 uuT is a matrix and is component at

row i and column j is equal to uiuju. This operation happens usually to integrate a newly measured
value into a matrix A for which we already computed the inverse.
Here we never invert a matrix, but we use the already known value
of A−1 to compute the new value after adding a rank-1 matrix. If
furthermore A is symmetric, then A−1 = A−T and denoting v =

A−1u we can rewrite (22) as

(A + uuT)−1 = A−1 − vvT

1 + uTv
(23)

Eigendecompositions An eigenvector v of a matrix is the square satis-
fies

Av = λv (24)

for some scalar λ, which may be complex in general even if A only
has real coefficients. We call λ the eigenvalue associated to the eigen-
vector v. By convention, ‖v‖ = 1. There are many properties on
eigenvalues depending on the matrix./ In general, our interest will Exercise: what are the eigenvectors of

the identity matrix?be on symmetric and possibly positive definite matrices, for which
the eigenvalues are respectively real and positive, and whose eigen-
vectors are orthogonal if they correspond to different eigenvalues. In
particular, this means that we can write

A [v1 · · · vn] = [λ1v1 · · · λnvn] (25)
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or written differently
AV = VΛ (26)

with
V = [v1 · · · vn] Λ = diag(λ1, . . . , λn)

Since V is formed by orthogonal vectors you can rewrite (26) as

A = VΛV T = ∑ λivivT
i (27)

Exercise How does the eigen decomposition helps in computing the in-
verse of a matrix?

We have

A−1 = V−TΛ−1V−1 = VΛ−1V T = ∑
1
λ i

vivT
i

Exercise What is the determinant of an orthogonal matrix? What can
you say about the determinant of a square matrix with respect to its eigen-
values? What about the trace?

If V is orthogonal, then V T = V−1 which is equivalent to

det V = (det V)−1 ⇔ det V = ±1

In turn, this means that

det A = det V det Λ(det V T) = det Λ = ∏ λi

For the trace, remark that

tr(VΛV T) = tr(V TVΛ) = tr(Λ) = ∑ λi

Probability

We will consider a simplistic view of probability, one that serves our
interest without getting in the way or introducing hard concepts un-
less they provide a very strong intuition about a problem. A random
variable can be considered as a mathematical object that can take any
value on a specific domain. This domain may be purely discrete,
purely continuous, or something in-between. This last possibility cre-
ates a host of practical issues that require something called measure
theory to solve adequately. As such, we will try to avoid these random
variables and only consider the pure ones, remembering that there is
a unifying view behind these.

Random variables are usually noted as upper-case letters as X and
Y, and the values they take on their domains as lowercase letters. A
realization of a random variable takes a value, which in the discrete
case is naturally noted as the event X = x. In a continuous domain,
there is an uncountable infinity of possible values for the random
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variable to take, and therefore there is not much interest in a specific
values, but rather in ranges of values. In this case, we are more inter-
ested in events a ≤ X ≤ b for some a < b. If the domain of the r.v. is
(−∞, ∞) we will mostly consider the event X ≤ x.

Cumulative and probability functions To each event we associate a
probability, meaning that we are able to measure the relative weight
of the event among all possible realizations of the random variable,
assuming that the sum of event weights are equal to 1. For discrete
variables, this measure of weight or probability law is given as a
function of the x ∈ D where D is the definition domain, as

P(X = x) (28)

This function can sometimes be parametrized, something that will be
of great interest in the rest of the course. A common discrete prob-
ability law is the Poisson law, where for an integer k > 0 we have

P(X = k) =
θk

k!
e−θ (29)

In the continuous case, the weight of the event is related to the range
and defined through a continuous probability density function or p.d.f.
f (x), so that

F(b)− F(a) = P(a ≤ x ≤ b) =
∫ b

a
f (x)dx

=
∫ b

−∞
f (x)dx−

∫ a

−∞
f (x)dx (30)

The cumulative distribution function F(x) is thus defined as

F(x) =
∫ x

−∞
f (y)dy (31)

Once again, care must be taken but when this integral is proper,
and f (x) is well behaved, it usually poses no issue. Note that you
should definitely not think about f (x) as the probability of the event
X = x; as said before, the probability of this event is virtually zero
and uninteresting. In particular, although in the discrete case we have
by construction that P(X = x) ≤ 1 since the sum of the probability Show that this is true for the Poisson

law; solution uses the fact that

eθ =
∞

∑
k=0

θk

k!

weights over all the possible events sums to 1, in the continuous case,
assuming the domain is (−∞, ∞), we want∫ ∞

−∞
f (x)dx = 1 (32)

which does not preclude f (x) to be stricly larger than 1 for some x.
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Usual laws Among the laws used the most for continuous r.v., the
most common one is definitely the Gaussian or so called normal law,
denoted as N (µ, σ2) and whose p.d.f. is

f (x; σ, µ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(33)

We include the parameters in the function using the notation f (x; µ, σ).
As we gravitate towards estimation, this notation will prove useful.
Another common law is the continuous distribution between end-
points a and b, usually written as U (a, b)

f (x; a, b) =

 1
b−a x ∈ [a, b]

0 otherwise
(34)

The exponential law E(θ) has density

f (x; θ) =
1
θ

e−
x
θ (35)

and is defined on [0, ∞]. The parameter θ is sometimes defined as
µ = θ−1. In this case, the density is

f (x; µ) = µe−µx. (36)

Finally, the χ2 distribution regularly appears throughout probability
and statistics. In particular, if you have r.vs. Xi distributed as stan-
dard Gaussian N (0, 1) and are independent3 then the sum of their 3 We’ll see later what that means exactly

squares

Y =
n

∑
i=0

X2
i (37)

follows a χ2(n) law. The parameter K is the number of independent
Gaussians in the sum and is dubbed degrees of freedom in most litera-
ture. The p.d.f. of a χ2 random variable is

f (y; n) =


1

2
n
2 Γ( n

2 )
y

n
2−1 exp

(
− 1

2 y
)

y ≥ 0

0 y < 0
(38)

The function Γ(·) is the Gamma integral; it is a common special func-
tion that behaves like the continuous equivalent of the factorial func-
tion.

Expectation, moments and quantiles The expectation of a random
variable is defined as

E[X] = ∑
i

xiP(X = xi) (39)
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if X is a discrete r.v. and takes on values in a set {xi} and Note that the expectation may not
exist, in which case usually the integral
definition will diverge or be improper.
Sometimes you can salvage this with
measure theory, but there exists even
common cases where you can’t—e.g.
Cauchy r.v.s.

E[X] =
∫ ∞

−∞
x f (x)dx (40)

if X is a continuous r.v. The integration is limited to the domain if it
is less than the entire real line. This basic definition is usually called
the mean, although expectation is actually defined for any function
g(X), for example in the continuous case4 4 Unless specified, the discrete case

mirrors all definitions.

E[g(X)] =
∫ ∞

−∞
g(x) f (x)dx. (41)

Since it is defined as an integral, the expectation is linear, in the sense
that if g(X) = aX + b for some scalars a and b, we have

E[aX + b] = aE[X] + b. (42)

Among possible functions g(·), monomials xk are called k-th order
moments, and

E
[
(X−E[X])k

]
(43)

are called centered moments. The centered moment of order 2 is called
variance and holds a very special place, so it sometimes has its own
notation

E
[
(X−E[X])2

]
=E

[
X2 − 2XE[X] + E[X]2

]
=E

[
X2
]
−E[X]2

Var(X) = E
[
(X−E[X])2

]
(44)

There is an interesting interplay between the mean and variance.
Consider a r.v. X such that E[X2] < ∞. Then for all c in R we have
that

E
[
(X− c)2

]
= E[X2]− 2E[X]c + c2

= E[X]2 − 2E[X]c + c2 + Var(X)

= (E[X]− c)2 + Var(X)

This also says that there is an extremal for the mean with respect to
the variance, in the sense that µ = E[X] iif

E
[
(X− µ)2

]
= min

c∈R
E
[
(X− c)2

]
(45)

Any other choice of c beyond the mean leads to a higher value for
E
[
(X− c)2].
Among other characterizations of an r.v. an interesting one is the

quantile, defined as the solution5 to 5 This definition only really makes sense
for well-behaved continuous r.v.

F(qp) = p (46)

for some 0 ≤ p ≤ 1. Within quantiles the value M = q1/2 is called the
median and has special properties. As per the definition, we have that

P(X ≥ M) ≥ 1/2 and P(X ≤ M) ≥ 1/2 (47)
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Like the mean, the median characterizes the position or location of the
r.v., whereas values like the variance characterize its scale. Unlike the
mean however the median is always defined. It also has an extremal
property, where TODO: understand the derivation

E [|X−M|] = min
c∈R

E [|X− c|] (48)

However this point may not be unique, since in the very general case
there may be many possible values of a verifying (47).

Inequalities There are interesting inequalities in probability theory
that should be known. If anything, remember that they exist so that
you can check whether they can help you derive bounds on quan-
tities of interest involving random variables. They are also used in
proofs a lot, for obvious reason: in mathematics, bounding a value is
a very powerful statement.

Proposition 1 (Markov inequality). Let h(·) be an increasing and posi-
tive function and X a non-negative r.v. such that E[h(X)] < ∞. Then for
any a such that h(a) > 0 we have

P(X ≥ a) ≤ E [h(X)]

h(a)
(49)

Proof. h(·) is an increasing positive function, so This notation uses indicators rather
than bound; notice that

P(h(X) ≥ h(a)) = E
[
1h(X)≥h(a)

]
which is the basis of a whole way to
define probability theory through
expectations.

P(X ≥ a) ≤ P(h(X) ≥ h(a)) =
∫

1h(X)≥h(a) f (x)dx (50)

Then∫
1h(X)≥h(a) f (x)dx = E

[
1h(X)≥h(a)

]
≤ E

[
h(X)

h(a)
1h(X)≥h(a)

]
(51)

Then

E
[

h(X)1h(X)≥h(a)

]
h(a)

=
E [h(X)]

h(a)
−

E
[

h(X)1h(X)<h(a)

]
h(a)

(52)

The last term is positive since h(·) is positive; removing it thus leads
to the expected result.

Proposition 2 (Chebyshev inequality). Let X be an r.v. with E[X2] <

∞. Then assuming a > 0

P(|X| ≥ a) ≤
E
[
X2]

a2 P(|X−E[X]| ≥ a) ≤ VarX
a2 (53)

Proof. Use Markov’s inequality.
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Proposition 3 (Hölder inequality). Let 1 < r < ∞ and 1/r + 1/s = 1.
Let X and Y be 2 r.v. such that E [|X|r] < ∞ and E [|Y|s] < ∞. Then
E [|XY|] < ∞ and

E [|XY|] ≤ E [|X|r]
1
r E [|Y|s]

1
s (54)

Proof. Remark that

1
r

log a +
1
s

log b ≤ log
(

a
r
+

b
s

)
(55)

for a > 0 and b > 0, since log is a concave function. This is equivalent
to

a
1
r b

1
s ≤ a

r
+

b
s

(56)

Then, substitute

a =
|X|r

E [|X|r] b =
|Y|s

E [|Y|s] (57)

which leads to

|XY| ≤ E [|X|r]
1
r E [|Y|s]

1
s

(
|X|r

rE [|X|r] +
|Y|s

sE [|Y|s]

)
(58)

Taking the expectation on both sides gives the proof.

Proposition 4 (Lyapunov inequality). Let 0 < v < t and 1/r + 1/s = 1.
Let X E

[
|X|t

]
< ∞. Then E [|X|v] < ∞ and

E [|X|v]
1
v ≤ E

[
|X|t

] 1
t (59)

Proof. Use Hölder’s with X = Xv, Y = 1, r = t/v. This inequality implies that

E[|X|] ≤ E[|X|2] 1
2 ≤ · · · ≤ E[|X|k ]

1
k

For real variables this means that
E[|X|] < ∞ is always true if E[X2] < ∞.

Proposition 5 (Jensen inequality). If g(·) is a convex function and
E[|X|] < ∞, then

g(E [X]) ≤ E[g(X)] (60)

Proof. Since g(·) is convex, for any point a in R there is an affine
function `a(x) which is dominated by g(x) and for which `a(a) =

g(a). If g(·) is differentiable, this is the tangent of g(·) at a. Then for
the r.v. X we have that

`a(X) ≤ g(X) =⇒ E [`a(X)] ≤ E [g(X)]

Since `a(·) is linear,
E [`a(X)] = `a (E[X])

Then setting a = E[X] finishes the proof.

Proposition 6 (Cauchy-Schwarz inequality). Let X and Y be 2 r.v. with
finite variance. Then

E[XY]2 ≤ E[|XY|]2 ≤ E[X2]E[Y2] (61)
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Proof. Note that the second inequality can be obtained through
Hölder’s. By Jensen’s inequality, we have that

|E[X]| ≤ E[|X|] (62)

which can be used to prove the first inequality.

Independence Let us start by defining the joint repartition of a couple
of continuous r.v. X and Y as

F(x, y) = P(X ≤ x, Y ≤ y) (63)

Notice once again that we are weighing a set of values defined by
bounds on said values. The distribution function provides the weight
to assign to the set, in a way. If everyone is well behave, we can de-
fine the joint p.d.f. as

fX,Y(x, y) =
∂2F(x, y)

∂x∂y
(64)

The density should verify∫∫
R2

fX,Y(x, y)dxdy = 1 (65)

as in the single r.v. case—we are still normalizing our probabilities to
1. The marginal p.d.f. of X and Y are obtained by integrating over a
single variable

fX(x) =
∫ ∞

−∞
f (x, y)dy fY(y) =

∫ ∞

−∞
f (x, y)dx (66)

Knowing the marginals does not give you the joint distribution, but
the opposite is true. In the discrete case the joint p.d.f. is naturally
defined through P(X = x, Y = y).

We can now define independence as follows: we say that 2 r.v. are
independent iif their joint p.d.f. factors in separate parts depending
only on their respective variables, i.e.

fX,Y(x, y) = fX(x) fY(y) (67)

The separate terms are in fact the marginals; you can check this
by definition. We can revisit our previous statement: knowing the
marginals gives you the joint distribution iif the variables are inde-
pendent. If we also look at the joint expectation of X and Y through
the straightforward definition, we see that

E[XY] =
∫∫

xy f (x, y)dydx (68)



lecture notes for statistics and estimation theory 13

Whenever X and Y are independent, this can be turned into

E[XY] =
∫∫

xy f (x) f (y)dydx

=
∫

x f (x)
(∫

y f (y)dy
)

dx

= E[X]E[Y]

The separation of the integrals is known as Fubini’s theorem or
Tonelli’s variant. It requires conditions on f (x) and f (y) which are
a bit beyond the scope of this class. We will just say that for most
non-pathological cases at hand they are indeed satisfied. Note here
that while independence implies that E[XY] = E[X]E[Y], having
E[X]E[Y] is not a sufficient condition for independence of X and Y.

Conditioning If the variable are not independent, we can develop on
how they depend on one another. Here, the joint p.d.f. will always
tell you everything you would need, but in practice it is not always
the most practical to manipulate or observe. In this case, you can try
to study the conditioned r.v. Y|X, with its p.d.f. defined as Check that Y|X is indeed an r.v., and

check what happens when X and Y are
independent.

f (y|x) =


f (x, y)
f (x)

if f (x) > 0

f (y) if f (x) = 0
(69)

We also define the conditional expectation as a function of x through

E(Y|X = x) =
∫

y f (y|x)dy (70)

This last value is a scalar for any x. However, X is itself a r.v. so in
full generality we may also see E[Y|X] as a r.v. As an expectation, it
also has many properties that we expect, among which linearity, as
well as TODO: can the last one be shown

without measure getting in the way?
It’s more or less OK in the discrete case.1. E[Y|X] = E[Y] if X and Y are independent

2. E[h(X)|X] = h(X) for well-behaved functions h(·)

3. E[h(X, Y)|X = x] = E[h(x, Y)|X = x]

Covariance Dependence and conditioning can be a bit annoying
to manipulate in practice, and in many cases they are very hard to
characterize. Let us define the covariance between 2 r.v. with finite
variance as

Cov(X, Y) = E[(X−E[X])(Y−E[Y])] = E[XY]−E[X]E[Y] (71)

There are some specific and useful properties for the covariance Blitz exercises
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1. Cov(X, X) = Var(X)

2. Cov(aX, bY) = abCov(X, Y)

3. Cov(X + a, Y) = Cov(X, Y)

4. Cov(Y, X) = Cov(X, Y)

5. Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

6. Cov(X, Y) = 0 if X and Y are independent

Random vectors Beyond couples of random variables, we will en-
counter a lot of random vectors within this course. A random vec-
tor is just a collection of r.v. indexed and stacked into a vector x =

(X1, . . . , Xn)T . We can define its mean as the vectors of means of the
individual components, i.e.

µ = E[x] =


E[X1]

...
E[Xn]

 (72)

Similarly, we can look at the covariance between the components of Exercise: show that the covari-
ance matrix is positive semidefi-
nite. Consider a r.v. c that is cen-
tered w.l.o.g. and has covariance
matrix C. For any x we have that
xTCx = xTE[ccT ]x = E[(xTc)(cT x)].
This is the variance of some random
r.v. z = xTc, and since the variance is
always positive we deduce that C is
positive definite.

the vector, e.g. E[XiXj] for 1 ≤ i ≤ n and 1 ≤ j ≤ n. This also has
a nice matrix through what is sometimes called the dyadic or outer
product

C = E
[
(x− µ)(x− µ)T

]
(73)

and we take the expectation on each component of the matrix.
Among the possible random vectors an astounding majority of

practical—or should we say solvable—problems are related to the
multivariate Gaussian distribution, which is the extension of the
Gaussian distribution to larger vectors using the aforementioned
mean and covariance. The p.d.f. of this distribution is Exercise: what happens where the

components of x are independent?

f (x) =
1

(2π)
N
2
√
|C|

exp
[
−1

2
(x− µ)TC−1(x− µ)

]
(74)

You can see that this indeed looks like a p.d.f.; the matrix operations
within the exponential are a quadratic form between the centered
vector x and the inverse covariance matrix C. This interpretation will
come in handy for us later.

A very important property of the multivariate Gaussian is that
all linear transformations of a multivariate Gaussian random vector
are still multivariate Gaussian random vectors. In other words, if we
define

y = Ax + b (75)
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and x follows a multivariate Gaussian distribution, then so does y.
Obviously, the parameters of the distribution are different, but we
can compute them easily using the linearity of the expectation:

E[y] = AE[x] + b (76)

and
E
[
(y−E[y])(y−E[y])T

]
= ACAT (77)

These expressions are actually not conditioned on the fact that y and
x are multivariate Gaussian; they are properties of the expectation for
any random vectors, and analogous to the scalar cases E[aX + b] =
aE[X] + b and Var(aX + b) = a2Var(X).

Exercise Assuming X1, . . . , Xn are independent variables, let

Xmin = min(X1, . . . , Xn) Xmax = max(X1, . . . , Xn)

Show that

P(Xmin > x) = ∏
i

P(Xi > x) P(Xmax < x) = ∏
i

P(Xi < x)

If X1, . . . , Xn are uniform random variables, compute E[Xmax] and Var(Xmax).

Exercise Let X be a positive r.v. with finite expectation. Show that Hint: the expectation of an indicator is
the probability.

E[X] =
∫ ∞

0
(1− F(x))dx =

∫ ∞

0
P(X > x)dx (78)

Exercise Let X, Y1 and Y2 be independent r.v. such that Y1 and Y2 are
N (0, 1). Let

Z =
Y1 + XY2√

1 + X2

Show that Z is N (0, 1) using P(Z ≤ z|X = x).

Exercise Let X and N be 2 r.v. with finite absolute expectation and N
takes values in the strictly positive integers. Let X1, X2, . . . be the sequence
of r.v. with the same law as X. Using conditioning, show Wald’s inequality

E

[
N

∑
i=1

Xi

]
= E[N]E[X]
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