mmWave communications for 5th generation cellular networks

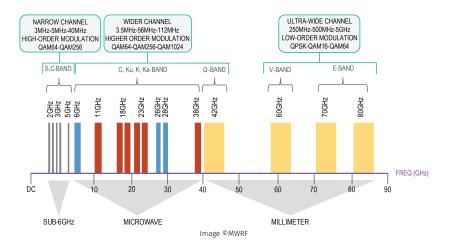
Paul Ferrand (Huawei Technologies)

HUAWEI TECHNOLOGIES CO., LTD.

Why mmWave?

Why mmWave?

Image ©Orange


▶ . . .

Other possibilities for mmWave:

- Data center interconnects
- Circuit junctions
- Information showers
- Vehicular communications

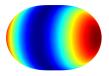
The $1000 \times$ throughtput objective of 5G (among others)

Density \times Spectral Efficiency \times Bandwith

Why mmWave?

$$C = W \log_2 \left(1 + \frac{\alpha P}{W N_0} \right)$$

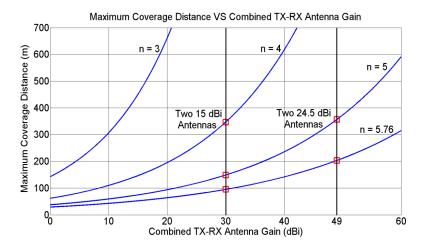
▶ Friis free-space equation:


$$P_r = \frac{\text{Effective Power}}{4\pi d^2} \times \text{Effective Aperture} = P_t G_r G_t \left(\frac{\lambda}{4\pi d}\right)^2$$

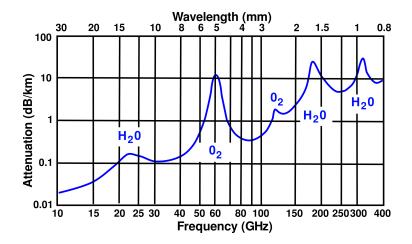
Antenna gain:

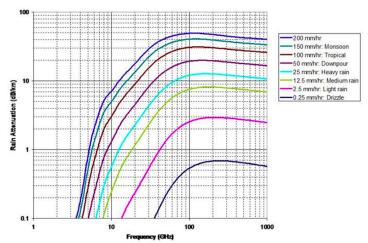
$$G\propto 4\pi rac{D^2}{\lambda^2}$$

Actual pathloss depends on the line-of-sight situation

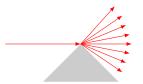

Circular antenna array (5cm at 6 GHz)

Circular antenna array (5cm at 60 GHz)




Coverage distance w.r.t. antenna gain, for a pathloss exponent n

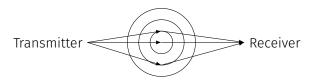
From Rappaport et al., "mmWave mobile communications for 5G cellular: it will work!", 2013.

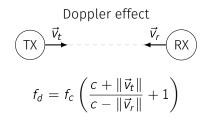

Atmospheric absorption occurs due to oxygen and water molecules

Rain attenuation effects are more prominent

 Diffraction effects are not a good propagation mechanism (unlike sub-4G cellular)

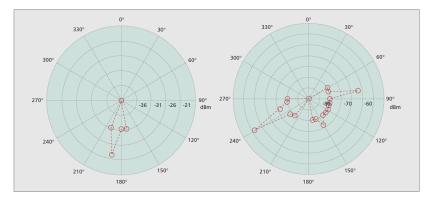
Reflection and scattering tend to be more specular

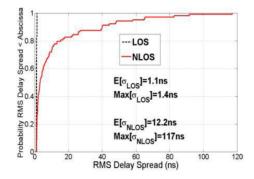

Reflective object


	Reflection and transmission losses.					
	Environmen	t Material	Angle (°)	Reflection Loss (dB)		
	Outdoor	Tinted Glas	s 10	0.5		
		Concrete	10	0.9		
		concrete	45	2.1		
		Clear Glass	5 10	1.3		
	Indoor	Drywall	10	1.5		
		Diywatt	45	2.2		
Environment		Material	Thickness (cm) Penetration Loss (dB)		
	Outdoor	Tinted Glass	4	40.1		
Outdoor		Brick	185	28.3		
	Indoor	Clear Glass	1	3.6		
		Tinted Glass	1	24.5		
		Drywall	38	6.8		

Reflection and transmission losses.

Diffraction and Fresnel zones.

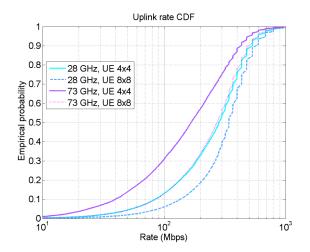

$$r_n = \sqrt{\frac{n\lambda d_1 d_2}{d_1 + d_2}}$$


- Channel stability depends heavily on beamwidth and bandwith
- Channels are expected to change roughly 10 times faster than in current cellular bands!

Angular power profile (azimuth) for a LoS and NLoS link

From Sun et al., "MIMO for mmWave communications: beamforming, spatial multiplexing or both?", 2014.

R.M.S. delay spread for a 38 GHz link in LoS and non-LoS conditions

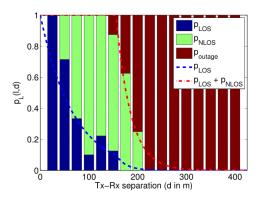


From Rappaport et al., "mmWave mobile communications for 5G cellular: it will work!", 2013.

	μ Wave	mmWave
Bandwith	1.4-150 MHz	100-2000 MHz
# antennas (BS)	1-8	16-256
# antennas (UE)	1-2	4-32
Delay spread	0.1-10 μ s	10-40 ns
Angle spread	60 deg.	60 deg.
Scatterers	4-9	<4
Fading	Rayleigh	Rician
Pathloss exponent	2-4	2-4
Penetration loss	small	high
Spatial correlation	less	more

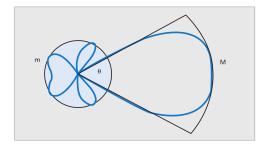
mmWave projected capacity

Channel capacity from measurements, at 28 GHz and 73 GHz



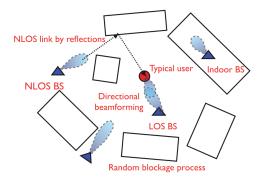
From Rangan et al., "Millimeter-Wave Cellular Networks: Potentials and Challenges", 2014.

mmWave projected capacity


The relatively sparse channel leads to a 3-level outage behavior:

$$p_{out}(d) = \max\{0, 1 - \exp(-\beta_0 d + \beta_1)\}$$
$$p_{LOS}(d) = (1 - p_{out}(d))\exp(-\beta_2 d)\}$$
$$p_{NLOS}(d) = 1 - p_{out}(d) - p_{LOS}(d)$$

From Adkeniz et al., 2013


Stochastic geometry approach ; extending Poisson point processes

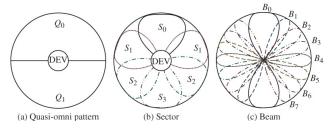
From Bai et al., "Coverage and capacity of mmWave cellular networks", 2014

mmWave projected capacity

Introducing random "shape" processes

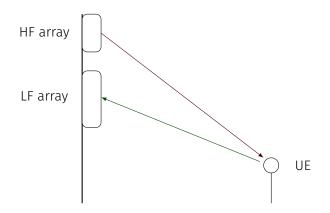
From Bai et al., "Coverage and capacity of mmWave cellular networks", 2014

Projected spectral efficiency using the SG model

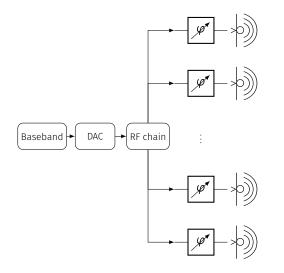

Architecture	Avg.	5%
SISO (µWave)	31	1.2
SU-MIMO (μ Wave)	77.2	1.4
Massive MIMO (μ Wave)	432.2	124.1
SU-beamsteering (mmWave)	451.2	294.4
MU-beamsteering (mmWave)	901.7	576

From Bai et al., "Coverage and capacity of mmWave cellular networks", 2014

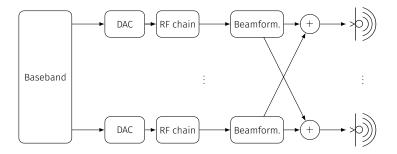
- Short wavelength : more potential for high gain antennas and arrays
- ► Even packaging antennas with other transceiver parts
- Compared to traditional antennas, efficiency is more of an issue than gain
- ► Joint behavior of other metal elements in the near-field
- Difficulties in measuring and characterizing the antenna patterns

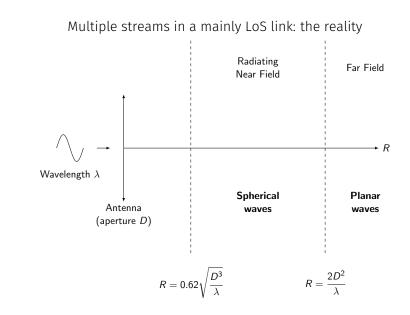

Beamforming/beamsteering basics $e^{in\phi_1}, e^{in\phi_2}$ $e^{i(n-1)\phi_1}, e^{i(n-1)\phi_2}$ $e^{i2\phi_1}, e^{i2\phi_2} - \varphi^{*}$ e^{1/\$\phi_1\$}, e^{1\$\$\$\$} = \$\$\$

- Beam-steering is required to get the benefits of antenna arrays and mmWave
- Issue : how to discover the angles of arrival? How to estimate then and feed them back?
- One solution : beam codebooks

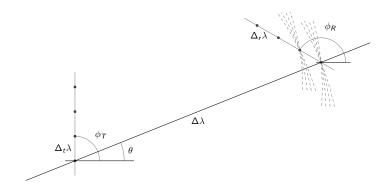


From Lan et al., "Beam codebook based beamforming protocol for multi-Gbps mmWave networks", 2009.

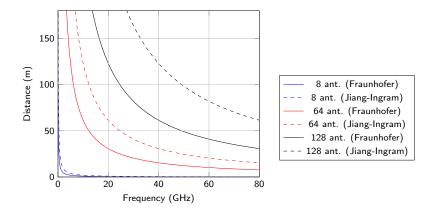

- Another solution: low-frequency assisted beamsteering
- But you can use classical phased array techniques on the massive MIMO low-frequency array!

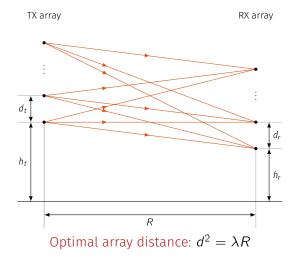


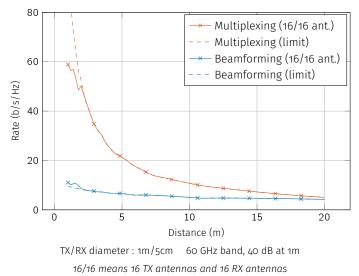
Analog beamforming (high ADC consumption)

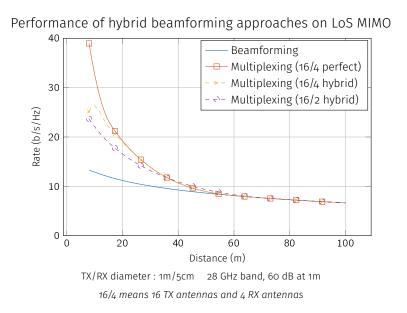


Hybrid beamforming : aims at enabling multiple users and/or streams on the same band




At a close range, spherical wave inputs some diversity in the channel \rightarrow capacity gains from multi-stream MIMO


Distance limits to see tangible effects on the channel capacity (Jiang-Ingram bound)



Line-of-sight MIMO: harnessing spherical waves

Comparing beamforming and static precoding at 60GHz with LoS MIMO

mmWave industrial and academic opportunities

- Massive wideband architectures
 - Single-carrier or OFDM/filter-banks?
- Precoding and multiplexing architectures
 - Low power, low cost, low resolution
 - Issues of channel estimation and quantization
- Dirty RF and non-optimal components
 - Phase noise, frequency offsets, oscillator pulling...
- MAC layer issues
 - Network discovery and beam scanning
 - Hidden nodes
 - Handovers, ...
- Waveform design for communications, and hybrid radar/communication transceivers